博客
关于我
机器学习(四)--------逻辑回归(Logistic Regression)
阅读量:460 次
发布时间:2019-03-06

本文共 870 字,大约阅读时间需要 2 分钟。

 

 

 

逻辑回归(Logistic Regression)

线性回归用来预测,逻辑回归用来分类。

线性回归是拟合函数,逻辑回归是预测函数

 

逻辑回归就是分类、

分类问题用线性方程是不行的   线性方程拟合的是连续的值     

逻辑回归是分类问题   比如肿瘤问题    只有 0 ,1 两种情况

逻辑回归的方程写成     

X是特征向量   theta是参数向量    theta转置乘以特征向量 就是参数与特征相乘

g代表逻辑函数     一个常用的s型逻辑函数就是 :

 

图为:

 

python代码为:

 

的意义呢     因为结果是 0 1  所以他的意义其实是为1的概率

 

 

决策边界decision boundary

比如说模型是这样的

g还是和上边一样  0 1  逻辑回归都用这个

 

我需要做的就是用一条线把他们分开   这条线可能是直线  也可能是更复杂的线

数𝜃 是向量[-3 1 1]。 则当−3 + 𝑥1 + 𝑥2 ≥ 0,即𝑥1 + 𝑥2 ≥ 3时,模型将预测 𝑦 =

1,那么这条线就是𝑥1 + 𝑥2 = 3

 

还有更复杂的场景:

 

 

ℎ𝜃

(𝑥) = 𝑔(𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + 𝜃3𝑥1

2 + 𝜃4𝑥2
2
)是[-1 0 0 1 1],则我们得到的判定边界恰好是圆
点在原点且半径为 1 的圆形

 

代价函数:的逻辑回归模型的拟合问题

 对于线性回归模型,我们定义的代价函数是所有模型误差的平方和。理论上来说,我们

也可以对逻辑回归模型沿用这个定义,但是问题在于,当我们将ℎ𝜃
(𝑥) =
1
1+𝑒
−𝜃𝑇
𝑋
带入到这样
定义了的代价函数中时,我们得到的代价函数将是一个非凸函数(non-convexfunction)

 

除了梯度下降,还有其他一些算法共轭梯度(Conjugate Gradient),局部优化法(Broydenfletcher goldfarb shann,BFGS)和有限内存局部优化法(LBFGS)。

也可能用特征缩放来进行优化。还有其他的一些优化方法。

 

 

多类别的分类问题

 

这种情况要定义正向类,负向类,进行多次决策。

 

转载地址:http://asrfz.baihongyu.com/

你可能感兴趣的文章
mysql 转义字符用法_MySql 转义字符的使用说明
查看>>
mysql 输入密码秒退
查看>>
mysql 递归查找父节点_MySQL递归查询树状表的子节点、父节点具体实现
查看>>
mysql 通过查看mysql 配置参数、状态来优化你的mysql
查看>>
mysql 里对root及普通用户赋权及更改密码的一些命令
查看>>
Mysql 重置自增列的开始序号
查看>>
mysql 锁机制 mvcc_Mysql性能优化-事务、锁和MVCC
查看>>
MySQL 错误
查看>>
mysql 随机数 rand使用
查看>>
MySQL 面试题汇总
查看>>
MySQL 面试,必须掌握的 8 大核心点
查看>>
MySQL 高可用性之keepalived+mysql双主
查看>>
MySQL 高性能优化规范建议
查看>>
mysql 默认事务隔离级别下锁分析
查看>>
Mysql--逻辑架构
查看>>
MySql-2019-4-21-复习
查看>>
mysql-5.6.17-win32免安装版配置
查看>>
mysql-5.7.18安装
查看>>
MySQL-Buffer的应用
查看>>
mysql-cluster 安装篇(1)---简介
查看>>